11 research outputs found

    A Data-driven Approach to Large Knowledge Graph Matching

    Get PDF
    In the last decade, a remarkable number of open Knowledge Graphs (KGs) were developed, such as DBpedia, NELL, and YAGO. While some of such KGs are curated via crowdsourcing platforms, others are semi-automatically constructed. This has resulted in a significant degree of semantic heterogeneity and overlapping facts. KGs are highly complementary; thus, mapping them can benefit intelligent applications that require integrating different KGs such as recommendation systems, query answering, and semantic web navigation. Although the problem of ontology matching has been investigated and a significant number of systems have been developed, the challenges of mapping large-scale KGs remain significant. KG matching has been a topic of interest in the Semantic Web community since it has been introduced to the Ontology Alignment Evaluation Initiative (OAEI) in 2018. Nonetheless, a major limitation of the current benchmarks is their lack of representation of real-world KGs. This work also highlights a number of limitations with current matching methods, such as: (i) they are highly dependent on string-based similarity measures, and (ii) they are primarily built to handle well-formed ontologies. These features make them unsuitable for large, (semi/fully) automatically constructed KGs with hundreds of classes and millions of instances. Another limitation of current work is the lack of benchmark datasets that represent the challenging task of matching real-world KGs. This work addresses the limitation of the current datasets by first introducing two gold standard datasets for matching the schema of large, automatically constructed, less-well-structured KGs based on common KGs such as NELL, DBpedia, and Wikidata. We believe that the datasets which we make public in this work make the largest domain-independent benchmarks for matching KG classes. As many state-of-the-art methods are not suitable for matching large-scale and cross-domain KGs that often suffer from highly imbalanced class distribution, recent studies have revisited instance-based matching techniques in addressing this task. This is because such large KGs often lack a well-defined structure and descriptive metadata about their classes, but contain numerous class instances. Therefore, inspired by the role of instances in KGs, we propose a hybrid matching approach. Our method composes an instance-based matcher that casts the schema-matching process as a text classification task by exploiting instances of KG classes, and a string-based matcher. Our method is domain-independent and is able to handle KG classes with imbalanced populations. Further, we show that incorporating an instance-based approach with the appropriate data balancing strategy results in significant results in matching large and common KG classes

    Results of the Ontology Alignment Evaluation Initiative 2021

    Get PDF
    The Ontology Alignment Evaluation Initiative (OAEI) aims at comparing ontology matching systems on precisely defined test cases. These test cases can be based on ontologies of different levels of complexity and use different evaluation modalities (e.g., blind evaluation, open evaluation, or consensus). The OAEI 2021 campaign offered 13 tracks and was attended by 21 participants. This paper is an overall presentation of that campaig

    Knowledge Graphs Evolution and Preservation -- A Technical Report from ISWS 2019

    Get PDF
    One of the grand challenges discussed during the Dagstuhl Seminar "Knowledge Graphs: New Directions for Knowledge Representation on the Semantic Web" and described in its report is that of a: "Public FAIR Knowledge Graph of Everything: We increasingly see the creation of knowledge graphs that capture information about the entirety of a class of entities. [...] This grand challenge extends this further by asking if we can create a knowledge graph of "everything" ranging from common sense concepts to location based entities. This knowledge graph should be "open to the public" in a FAIR manner democratizing this mass amount of knowledge." Although linked open data (LOD) is one knowledge graph, it is the closest realisation (and probably the only one) to a public FAIR Knowledge Graph (KG) of everything. Surely, LOD provides a unique testbed for experimenting and evaluating research hypotheses on open and FAIR KG. One of the most neglected FAIR issues about KGs is their ongoing evolution and long term preservation. We want to investigate this problem, that is to understand what preserving and supporting the evolution of KGs means and how these problems can be addressed. Clearly, the problem can be approached from different perspectives and may require the development of different approaches, including new theories, ontologies, metrics, strategies, procedures, etc. This document reports a collaborative effort performed by 9 teams of students, each guided by a senior researcher as their mentor, attending the International Semantic Web Research School (ISWS 2019). Each team provides a different perspective to the problem of knowledge graph evolution substantiated by a set of research questions as the main subject of their investigation. In addition, they provide their working definition for KG preservation and evolution

    Challenges of linking organizational information in open government data to knowledge graphs

    Full text link
    Open Government Data (OGD) is being published by various public administration organizations around the globe. Within the metadata of OGD data catalogs, the publishing organizations (1) are not uniquely and unambiguously identifiable and, even worse, (2) change over time, by public administration units being merged or restructured. In order to enable fine-grained analyzes or searches on Open Government Data on the level of publishing organizations, linking those from OGD portals to publicly available knowledge graphs (KGs) such as Wikidata and DBpedia seems like an obvious solution. Still, as we show in this position paper, organization linking faces significant challenges, both in terms of available (portal) metadata and KGs in terms of data quality and completeness. We herein specifically highlight five main challenges, namely regarding (1) temporal changes in organizations and in the portal metadata, (2) lack of a base ontology for describing organizational structures and changes in public knowledge graphs, (3) metadata and KG data quality, (4) multilinguality, and (5) disambiguating public sector organizations. Based on available OGD portal metadata from the Open Data Portal Watch, we provide an in-depth analysis of these issues, make suggestions for concrete starting points on how to tackle them along with a call to the community to jointly work on these open challenges

    Results of the Ontology Alignment Evaluation Initiative 2023

    No full text
    collocated with the 22nd International Semantic Web Conference ISWC-2023 November 7th, 2023, Athens, GreeceInternational audienceThe Ontology Alignment Evaluation Initiative (OAEI) aims at comparing ontology matching systems on precisely defined test cases. These test cases can be based on ontologies of different levels of complexity and use different evaluation modalities. The OAEI 2023 campaign offered 15 tracks and was attended by 16 participants. This paper is an overall presentation of that campaign

    Knowledge Graphs Evolution and Preservation -- A Technical Report from ISWS 2019

    No full text
    One of the grand challenges discussed during the Dagstuhl Seminar "Knowledge Graphs: New Directions for Knowledge Representation on the Semantic Web" and described in its report is that of a: "Public FAIR Knowledge Graph of Everything: We increasingly see the creation of knowledge graphs that capture information about the entirety of a class of entities. [...] This grand challenge extends this further by asking if we can create a knowledge graph of "everything" ranging from common sense concepts to location based entities. This knowledge graph should be "open to the public" in a FAIR manner democratizing this mass amount of knowledge." Although linked open data (LOD) is one knowledge graph, it is the closest realisation (and probably the only one) to a public FAIR Knowledge Graph (KG) of everything. Surely, LOD provides a unique testbed for experimenting and evaluating research hypotheses on open and FAIR KG. One of the most neglected FAIR issues about KGs is their ongoing evolution and long term preservation. We want to investigate this problem, that is to understand what preserving and supporting the evolution of KGs means and how these problems can be addressed. Clearly, the problem can be approached from different perspectives and may require the development of different approaches, including new theories, ontologies, metrics, strategies, procedures, etc. This document reports a collaborative effort performed by 9 teams of students, each guided by a senior researcher as their mentor, attending the International Semantic Web Research School (ISWS 2019). Each team provides a different perspective to the problem of knowledge graph evolution substantiated by a set of research questions as the main subject of their investigation. In addition, they provide their working definition for KG preservation and evolution
    corecore